viernes, 19 de febrero de 2016

Historia del Calculo



Los orígenes del cálculo se remontan unos 2,500 años por lo menos, hasta los antiguos griegos, quienes hallaron áreas aplicando el "método de agotamiento".
El Cálculo cristaliza conceptos y métodos que la humanidad estuvo tratando de dominar por más de veinte siglos
Sus aplicaciones son difíciles de cuantificar porque toda la matemática moderna, de una u otra forma, ha recibido su influencia; y las diferentes partes del andamiaje matemático interactúan constantemente con las ciencias naturales y la tecnología moderna.
Newton y Leibniz son considerados los inventores del cálculo, pero representan un eslabón en una larga cadena iniciada muchos siglos antes. Fueron ellos quienes dieron a los procedimientos infinitesimales de sus antecesores inmediatos, Barrow y Fermat, la unidad algorítmica y la precisión necesaria como método novedoso y de generalidad suficiente para su desarrollo posterior.
El extraordinario avance registrado por la matemática, la física y la técnica durante los siglos XVIII, XIX y XX, se lo debemos al Cálculo infinitesimal y por eso se puede considerar como una de las joyas de la creación intelectual de la que el hombre puede sentirse orgulloso. La palabra cálculo proviene del latín calculus, que significa contar con piedras.
1.1 Civilizaciones Antiguas
El avance algebraico de los egipcios, dio como resultado la resolución a ecuaciones de tipo. La correcta implementación de la regla aritmética de cálculo, por parte de los Indios, aumento el conocimiento matemático, y la creación de los números irracionales, además que ayudó a la resolución de sistemas de ecuaciones.
El Cálculo Diferencial se origina en el siglo XVII al realizar estudios sobre el movimiento, es decir, al estudiar la velocidad de los cuerpos al caer al vacío ya que cambia de un momento a otro; la velocidad en cada instante debe calcularse teniendo en cuenta la distancia que recorre en un tiempo infinitesimalmente pequeño.

En 1666 Sir Isaac Newton (1642-1727), fue el primero en desarrollar métodos matemáticos para resolver problemas de esta índole. Inventó su propia versión del cálculo para explicar el movimiento de los planetas alrededor del Sol. Newton concibió el llamado Método de las Fluxiones, considerando a la curva como la trayectoria de un punto que fluye; denomina "momentum" de la cantidad de fluente al arco mucho muy corto, recorrido en un tiempo excesivamente pequeño, llamando la "razón del momentum" al tiempo correspondiente, es decir, la velocidad
Casi al mismo tiempo, el filósofo y matemático alemán Gottfried Wilhelm Leibniz (1646- 1716), realizó investigaciones similares e ideando símbolos matemáticos que se aplican hasta nuestros días. La concepción de Leibniz se logra al estudiar el problema de las tangentes y su inverso, basándose en el Triángulo Característico de Barrow, observando que dicho triángulo al que se forma con la tangente, la subtangente y la ordenada del punto de tangencia, así mismo, es igual al triángulo formado por la Normal, la Subnormal y la ordenada del mismo punto.
Después de Newton y Leibniz, el desarrollo del cálculo fue continuado por Jacobo Bernoulli y Johann Bernoulli..
Destacan otros matemáticos por haber hecho trabajos importantes relacionados con el Cálculo Diferencial, sobresaliendo entre otros, los siguientes:
  • Pierre Fermat (1601-1665), matemático francés, quien en su obra habla de los métodos diseñados para determinar los máximos y mínimos, acercándose casi al descubrimiento del Cálculo Diferencial, mucho antes que Newton y Leibniz. Dicha obra influenció en Leibniz en la invención del Cálculo Diferencial.
  • Johannes Kepler, tiempo después, coincide con lo establecido por Oresme, conceptos que permitieron a Fermat en su estudio de máximos y mínimos, las tangentes y las cuadraturas, igualar a cero la derivada de la función, debido a que la tangente a la curva en los puntos en que la función tiene su máximo o mínimo, es decir, la función es paralela al eje donde la pendiente de la tangente es nula. X
  • Isaac Barrow (Londres, 1630 - id., 4 de mayo, 1677), maestro de Newton, construyó el "triángulo característico", en donde la hipotenusa es un arco infinitesimal de curva y sus catetos son incrementos infinitesimales en que difieren las abscisas y las ordenadas de los extremos del arco.
  • Joseph-Louis LaGrange (1736-1813), quien demostró por primera vez el Teorema del Valor Medio.
  • Agustín-Louis Cauchy (París, 21 de agosto de 1789- Sceaux, 23 de mayo de 1857), matemático francés, impulsor del Cálculo Diferencial e Integral, autor de La Teoría de las Funciones de las Variables Complejas, se basó en el método de los límites; las definiciones de "función de función" y la de "función compuesta" se deben a él. El concepto de función continua fue introducido por primera vez por él en 1821.
  • Leonhard Euler (1707-1783). La simbología se debe a él, quien además de hacer importantes contribuciones a casi todas las ramas de las matemáticas, fue uno de los primeros en aplicar el cálculo a problemas de la vida real en la Física. Sus extensos escritos publicados incluyen temas como construcción de barcos, acústica, óptica, astronomía, mecánica y magnetismo.
  • John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703), enuncia el concepto de "límite". 

 
Pierre Fermat

Johannes Keppler

Isaac Barrow


Joseph-Louis LaGrange



Agustin Louis Cauchy



Leonhard Euler



John Wallis
La representación simbólica "lím" se debe a Simón Lhuilier (n. Ginebra, Suiza el 24 de abril de 1750, f. en Ginebra el 28 de marzo de 1840). El símbolo "tiende a" lo propuso J. G. Leathem.

2.1 Personajes y contribuciones en la antigüedad
El trabajo prehelénico de los Egipcios y Babilonios, aunque tuvo una ausencia de generalidad y atención a las características esenciales sobre la naturaleza lógica del pensamiento matemático y su necesidad de pruebas deductivas, logró un acervo tal de cálculos y procedimientos concretos, que tuvo sin duda, una clara influencia en los trabajos iníciales de los filósofos y matemáticos griegos:
  • Tales de Mileto. Fue quien inicialmente introdujo los métodos deductivos no exentos de cierto empirismo y falta de generalidad- a través de procesos sistemáticos de abstracción, que ciertamente fueron la base para los Pitagóricos. Zenón de Elea (450 a. de C. aprox.), formuló un buen número de problemas (paradojas) basados en el infinito.
Para los antiguos griegos, los números como tales eran razones de números enteros, por lo que no todas las longitudes eran números.
  • Eudoxo (408 a. de C. - 355 a. de C.) de Cnido, Asia Menor (Turquía).
El infinitesimal. Estos problemas fueron retomados hasta el siglo XIV por los filósofos escolásticos, y su discusión, cualitativa en gran parte, pero apoyada en demostraciones gráficas, hizo posible la introducción posterior de la geometría analítica y la representación sistemática de cantidades variables.

TALES DE MILETO

ZENÓN DE ELEA

EUDOXO
                             

Personajes y contribuciones en el siglo XVIII
  • Gilles Persone de Roberval (1602- 1675). Cálculo de tangentes como vectores de "velocidad instantánea". Cicloide: su área es 3 veces la del círculo que la genera.
  • John Wallis (1616-1703). Escribió su Arithmetica Infinitorum en 1655. Abordó sistemáticamente, por primera vez, la cuadratura de las curvas de la forma y=x k donde k no es necesariamente un entero positivo. Su trabajo en la determinación de los límites implicados fue empírico. Tuvo una influencia decisiva en los primeros desarrollos del trabajo matemático de Newton.
  • Isaac Barrow (1630-1677). Maestro de Newton. Competente en árabe y griego, mejoró traducciones de textos griegos. Punto de vista conservador en matemáticas.

GILLES DE ROBERVAL


JOHN WALLIS
Incluyen los procedimientos infinitesimales conocidos por él. La mayoría de los problemas presentados tratan tangentes y cuadraturas desde un punto de vista clásico (geométrico en lugar de analítico). Incluye su método del "triángulo característico" en el que implícitamente se toma a la recta tangente como la posición límite de la secante.
                                                  
                                                        ISAAC BARROW

Nace el cálculo
  • Isaac Newton (1643-1727). En 1687 fue publicada su obra magistral Philosophiae Naturalis Principia Mathematica en el cual se exponen, en diferentes pasajes, claras exposiciones del concepto de límite, idea básica del cálculo.
Ofrece tres modos de interpretación para el nuevo análisis:
  • aquél en términos de infinitesimales usado en su De analysi, su primer trabajo (1669, publicado en1711);
  • aquél en términos de fluxiones, en la que parece apelar con mayor fuerza a su imaginación; ? aquél en términos de razones primeras y últimas o límites, visión que él parece considerar más rigurosa.
  • Gottfried Wilhelm von Leibniz (1646-1716). Sus resultados en el cálculo integral fueron publicados inicialmente en 1684, Introduce los elementos diferenciales dy ó dx para expresar la "diferencia entre dos valores sucesivos" de una variable continua y ó x. Al tomar la suma de tales diferenciales de la variable se obtiene la variable misma, lo cual denota por dx.
El "triángulo diferencial" que había sido estudiado en varias formas particularmente en los trabajos de Torricelli, Fermat y Barrow es el antecedente más cercano al enfoque que ofrece Leibniz en su tratamiento de sumas y diferencias, aunque él mismo aseguró que la inspiración inicial la encontró al estudiar el tratado de Pascal "Traité des sinus du quart de cercle".
Sus obras dan cuenta de un método generalizado para abordar esas sumas y diferencias, además del tratamiento inverso de ambas operaciones, mediante el uso de un sistema de notación y terminología perfectamente acoplado a la materia que trata en sus bases lógicas y operativas.
Leibniz siempre se dio cuenta que estaba trabajando con una nueva materia. Se especula que Newton, hasta que supo de esta postura de Leibniz consideró él mismo su método de fluxiones como una nueva materia también y un modo de expresión matemática organizado más que simplemente una útil modificación de reglas anteriores.
                                  
                 ISAAC NEWTON                     GOTTFRIED WILHELM VON LEIBNIZ
El trabajo más importante de cálculo de Newton estuvo escrito de 1665 a 1676, pero ninguna de sus obras fue publicada durante ese tiempo. Se ha sugerido que la demora en la publicación de sus tres principales trabajos fue ocasionada por el hecho de que estaba insatisfecho con los fundamentos lógicos de la materia. En su monografía no hace explícito el uso de la notación fluxional ni de la idea. En su lugar usa lo infinitamente pequeño, tanto geométrico como analítico de manera similar a la que encontramos en Barrow y Fermat, y extiende su aplicabilidad por el uso del Teorema del Binomio.

  • http://analisisfigempa.wikispaces.com
  • http://www.slideshare.net
  • Apuntes de historia de las matemáticas, Volumen 1, nº1, 2002.
  • Melanie Martínez